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Abstract

Recently proved theorems concerning weak convergence of non-Markovian

processes to diffusions, together with an averaging and a stability method, are

applied to two (learning or adaptive) processes of current interest: (1) an

automata model for route selection in telephone traffic routing, (2) an

adaptive quantizer for use in the transmission of random signals in communica-

tion theory. The models are chosen because they are prototypes of a large

class to which the methods can be applied. The technique of application of

the basic theorems to such processes is developed. Suitably interpolated and

normalized flearning or adaptive# processes converge weakly to a diffusion,

as the tlearning or adaptation# rate goes to zero. For small learning rate,

the qualitative properties (e.g., asymptotic (large-time) variances and para-

metric dependence) of the processes can be determined from the properties of

the limit.
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I. INTRODUCTION

References [7), [1] develop a useful method to study the asymptotic proper-

ties as c + 0 and nr < IV < c for any real T of solutions to stochastic difforence

equations of the form

(1.1) = + Lh('- + V,(, g L ( L + o(0 YER
n+l n C n n E n n n

where the distributions of the random sequence {F might depend on the {Ycn.
n n

Such equations occur frequently in applications. The methods in 1I also work

when c is replaced by a sequence L n 0 as n -
" from which asymptotic proper-

ties (rates of convergence) of various forms of stochastic approximations can

be obtained.

The emphasis in [I (an application of [71) concerned the case where the

Eh and g are smooth, and no details for the non-smooth case or its applications

were given, nor was the asymptotic case where n - , then F - 0 treated. This

is a deficiency, since in many applications in communication, control and

automata theory, the h and gC might simply be indicator functions and theC

noise { ) depend on {Yn}, and the asymptotic properties (as n 4 m, then c + 0)
n ni

desired. Here, we apply the basic results of [7] to two such problems. The

two problems have-current technoloqical importance in their own right and each

has been the subject of a great deal of work. Our method often yields a complete

analysis of the asymptotic properties under realistic conditions. The two

problems are typical of a vice class, and they illustrate the power and

applicability of the general technique, as well as the method of applying it

to concrete problems. In a sense the method is an extension with more complex

memory structure of the sort of "slow learning" results obtained by Norman (9),

and should have broad applications to the areas cited above.
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The basic type of result is the following. Define Y (), t G [0,-), by

Y E(0) = y and YCt) = Y on [iE,iE+C). Under appropriate conditions,
0 1

Theorem 1 gives weak convergence of {Y V.)) in D r[O,) to a particular diffusion

process, as c - 0. Now, let {n } denote a sequence of integers tending to =

as c - 0. For t > 0, define Y (t)- Yt:(t+cn ). The tilde ' always denotes a

shift by n (discrete parameter) or en (continuous parameter). By using

Theorem 1 but starting {Yc} at time n instead of at time 0, we will get anC

great deal of information on the asymptotic properties (large n, small ).

The next section gives some background material from [7]. Sections III to VI

treat a learning automata approach to certain problems in adaptive routing of

telephone calls [21-[3]. The second problem, in Sections VII-VIII, concerns

the asymptotic theory of an adaptive quantizer from communications applications

[4), [5].
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II. SOME BACKGROUND MATERIAL

SDr [o,-) denotes the space of Rrvalued functions on (0,-) which are right-

continuous and have left-hand limits, and is endowed with the Skorokhod topology

[6]. if denotes the continuous functions on R x 10,-) with compact support
and rEA ' the subset whose mixed partial derivatives up to order (x in t and B3

0

in the componentsof x are continuous. Let b(,'.), a ij(,), i,j < r, be con-
Rr

tinuous functions on R x [0,-). Let the operator

A b b(x, t) 1 a (x,t) a2

i ax 1 2 ij iJ axi x

be the infinitesimal operator of a diffusion process X(). Assume that the

solution to the martingale problem (on Dr [0,)) of Strook and Varadhan (81

corresponding to A has a unique non-explosive solution for each initial con-

dition.

Let b (*) denote a function with values in [0,1], equal to 1 on S =
N N

{x: IxI<N}, equal to zero in Rr-s +_ and with second derivatives bounded

uniformly in x and N. Define {YE' n>O} by
n

(2.1) cc.N vc,N+ Ich ( ,N,, + ,,- C o b Nn+l n c n n n n N n

Y ,N YE if cY'l < N and is zero otherwise,
0 0 0

and define YC,N () analogously to Y C(.). For purely technical reasons, it is

convenient to state the theorem in terms of {N 1. Let AN be the infinitesimal
n

Noperator of a (not necessarily unique) diffusion process, denoted by X (",

and suppose that its coefficients aN(.,.), bNC('.) are continuous, bounded,

I|.
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have compact support and equal a(.,.), b(-,.) in S Suppose that {yCN(.)}

converges weakly to some such XN(.) as t * 0, for each N. Then [71 {Y()

converges weakly to X(*) as n - , The following theorem is a restatement of

Theorem 3 of (7] with T. -- t. Theorem 2 of [71 provides a very convenient

LN
method of proving tightness, and we will use it in the sequel. Let E n  denote

expectation conditioned on {Y ' j<n, t,, j<nl.

Theorem 1. Assume the conditions stated above on the solution to the martingale

r N N
problem on D [0,-) corresponding to operator A, and on A and X (-). For each

N, and f(',) E £, a dense set (sup norm) in W, let there be a sequence

{fCN(.)} satisfying the following conditions: it is constant on each interval

[nE,nc+e), at nc it is measurable with respect to the a-algebra induced by

{yC.,N, jn,&C j<n} and
J -- )'-

(2.2) sup EIf 'N(n)l + sup .- EIEcNfcN (nc+c)fIN(nc) I < 00
n,E n,c

and as c 0 and for each t as nt: -t,

(2.3) ElfE'N(nE) - f(Y ' Nnc) 0,
n

EC N f c , N ( n c + 0 ) _ f , N (n O
(24 ln a N ,N(2.4) El - ( + AN) f ( Y  n) + 0.

Then, if {yEN(.), E >c>0} is tight in Dr [0,-) for each N, where E does not
00

depend on N and Y (0) converges weakly to X(0), {YC(.)) converges weakly to

(.), the unictue solutich to the martingale problem with initial condition X(O).

II* 0ir l . . . llll . . .. . . ., . .. . . .,. . .. . .' -
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III. AN AUTOMATA PROBLEM - INTRODUCTION

Narendra [21, [3] and others have studied the applicat ion of automata and

learning theory to problems in the routing of telephone calls through a multi-

node network and have suggested a variety of interestinq automata moidels for

this application. Under various assumptions (both explicit and implicit) they

have stated convergence results in a number of cases. Generally, their results

are applications of Norman's (91 results on slow learning. Here, we take one

of their models and show how to apply Theorem 1 to get a much more complete

asymptotic theory (large time) for small rate of chanqe of the automata behavior

(0A, and under more realistic conditions. The case dealt with here can readily

be generalized - as will be commented on below. The example illustrates the

power and usefulness of the approximation techniques used here. The algorithm

should be considered as a prototype. It might not be the best, but it well

serves to illustrate the method.

The problem formulation. Calls arrive at a transmitting or switching

terminal at random at discrete time instants n - 0,1,2,..., with P{one call

arrives at nth instant) =, G & (0,1), P{>l call arrives at nth instant) = 0.

From the terminal, there are two possible routings to the destination, route

1 and route 2, the ith route having N. independent lines - and can thus handle1

up to Ni calls simultaneously. Let [n,n~l) denote the nth interval of time.

The duration of each call is a random variable with a geometric distribution:

P{call completed in the (n+l)st intervalluncompleted at end of nth interval,

route i used) - A., Ai E (0,I). The members of the double sequence of the

interarrival times and call durations are mutually independent. It is possible

to work with more general Markovian arrival processes, but we retain a simple

structure in order to emphasize the main points. In practice, a more complex
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network would occur - and perhaps cycles might exist, and a vector routing

parameter would be used, one component per node. But the main idea is similar.

As in Theorem 4, the average dynamics are used for the stability analysis.

From that point on, the proof of the appropriate generalization of Theorem 5

would be quite similar to the proof of Theorem 5.

The parameter c will be used for the rate of adjustment of the routingi

automaton- the device which selects the route. The adjustment mechanism will

be defined later. The routing automaton operates as follows. For each fixed

C, let {yc} denote a sequence of random variables - with values in [0,11. In

order to have an unambiguous sequencing of events, suppose that the calls ter-

minating in the nth interval actually terminate at time n+ I, and arrivals and

route assignments are at the instants 0,1,2,... precisely. Thus the state at

time (n+l) does not include the calls just terminated or calls arriving at (n+l).

Define the "route occupancy process" X n = (X' , X '2) where X 'i is the numbern n n n

+ i
of lines of route i occupied at time n . Thus, Xc' < N.. If a call arrives at

n - 1

instant nl, the automaton "flips a coin", and chooses route 1 with probability

y and chooses route 2 with probability (l-y ). If all lines of the chosen route
n n

i are occupied at instant (n+l), then the call is switched to route j (j j i)

If all lines of route j are also occupied at instant (n+l), then the call is

rejected, and disappears from the system.

In a more realistic situation, the network would have many nodes - not

simply 2, and many possibilities of routing from node to node. The adjustment

algorithm might be different, but the problem would be handled in exactly the

same way. The object is to adjust the {yC) sequentially (based on the system
n

behavior) so that some desired behavior occurs. In order to be specific, we

use the following "linear-rtward" algorithm [3). Let J£ denote the indicator
in
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of the event [call arrives at n+l, is assigned first to route I and is

accepted by route il. For practical as well as theoretical purposes, it is

important to bound y away from the points 0 and 1. Let 0 < ye < yu < 1. Weiu
use the algorithm (3.1), where Ye denotes truncation at yu or y, and a(y) =

l-y, B(y) = -y.

*(3.1) y C jy= + "a~yC2)J + C$ (IF C)j I y.Yn+l ni l n2 y Z

Define ax('), 8 (-) such thata(-) - (.) a in [yk,y u-c and (-) =

SE(.) in lyZ+c,y u] and otherwise are such that (3.2) is equivalent to (3.1):

(3.2) = E yn)+ 8c (yE+)jCn]Yn+l Yn n in +C n 2n

We will study the asymptotics of the behavior of a centered and normalized

{ycn for small c. Part of the difficulty, which our scheme is well able to

handle, is due to the fact that {yc} is not Markovian. In the theoretical parts

of [2], (3], the problem is set up so that {yn} is Markovian.

£

Some definitions. If the choice probabilities y are held fixed at some

value y for all n, then the route choice automaton still makes sense, although

there is no learning. For fixed route selection probability y E (0,1), let

{Xn(y)) - {n((y),X2) 0<n<-} denote the corresponding route occupancy

process. For the process {Xn(y)), the state space Z - {(i,j): i<NI J',N2} (whose

points are supposed ordered in some fixed way) is a single ergodic class, and the



probability transition matrix, denoted by A' (y), has infinitely differentiable

components. With qiven initial condition IPiX 0 (Y)=t1, (iC-ZI define 1 (a y)

P{X (y)cz} and the vector P (y) - {Pn (ly), tEZ). Then

(3.3) P n+l (Y) = A(Y)P n(Y).

The pair -(XnYn ) ,n>0 is a Markov process on Z ×  I and thq, inarinal
nn

transition probability P{XE C=(k,£)fXn=(i,j), y') is just the ((i,j)-column,
n+l ' n n

(k,t)-row) entry of (yn ) . Define the vector PC = {P(a) , aEZ} where P(a) =
n n n n

P{X=Mlc, <n, C0}. Then

n+l n n

Also, let P(y) = {P(ctY ) , cGZ) denote the unique invariant measure for IX (y)},1 ' ~ ~ ~ ) F n

with marginal defined by P1(ily) = IkP(J,kly), P1(y) - (Ily), JfNI} and

similarly for route 2. Finally, define the transition probability P(c,j,u ly)

P{X (y)=lIX0(Y)=a} and write the marginal as

pi(a,j,kly) = P{Xl(y)=klX0 (Y)=}.

Define E n to be the expectation conditioned on {X, E <n)

Ni

A relationship of (3.1) to a differential equation. Define v (l-A.)

Note that

(3.5a) EE J In y 11 - V I{X '  }] U,
ni n 1 n 1
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(3.5b) EEJE = (1-y1 )[ - V 2 I{X n2=N 2 ]nnn 2n n 2

For small E, it is reasonable to try to relate the behavior of {yn to the

solution of (3.6), where F(y) is just ELct(y)Jn # JB(y)JC ], but with {XC ,yl

replaced by {Xn(y),y } and using the stationary measure.

(3.6) 4 = ji(y)y[l-v P1 (N1 jY) I - P(l-y)6(y) [l-V2 P 2 (N2 1y)]

= IIy(l-y)[2 P2 (N21y) - VIP 1 (N1Iy)] Z F(y).

As y increases, P (Nl1 Y) increases (and P2(N2lY) decreases) monotonically.

Thus, there is a unique point y C (0,1) such that F(y) = 0. Also, F(y) > 0

for y < y and F(y) < 0 for y > y. We assume that y C (Yxyu) and we also make

the apparently unrestrictive assumption that Fy(y) # 0. We actually will study
y

the asymptotic properties of U yn-y)/4, for large n and small E. Inn n

particular, let n. be a sequence of integers tending to - as c - 0, and define

the processes U(") by U (0) = U' and 5 (t) = U'. on [iEis+). When then n
C C

U (.) are dealt with, the {n6 will either be explicitly defined or their

values will be unimportant. We show weak convergence of {U6 (.)} to the Gauss-

Markov diffusion u(.) defined by (6.3). If n C fast enough as e -* 0, then

the limit u(-) is stationary. The general method can be applied to many other

problems in learning, automata and systems theory.
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IV. SOME PRELIMINARY RESULTS

In this section, we prove some auxiliary results concerning uniform con-

vergence of P n(y) and its derivatives to P(y) and its derivatives.

Theorem 2. For each y C [yt,y u, let A'(y) denote a Markov transition matrix

(continuous in y) such that the corresponding Markov chain fX (y)) is ergodicn

with invariant measure P(y). Then P(.) is also continuous and there is a 6 > 0

such that the eigenvalues of A(y), except for the single eigenvalue unity,

are bounded in absolute value by 1-6 for all yC [y,y ]. P n(y) converges to

P(y) uniformly (and at a geometric rate) in y G [ykyu ] and in P0 (y).

Proof. The last sentence follows from the penultimate sentence. The

continuity of P(.) is a consequence of the uniqueness for each y, of the eigen-

vector of A(y) corresponding to the eigenvalue unity (the invariant measure).

Next, suppose that there is no such S. Let A(y) be a qxq matrix and let

(y)., q(y) denote the eigenvalues. Order them such that A1 (y) 1.

Then there is a y and a sequence {yn}C [yt,yu ] such that as Yn - y, at least

one eigenvalue (other than the one which is always unity) approaches the unit

circle. In particular, suppose that the ordering is such that Ix2 (Yn 1

and that (choosing a subsequence if necessary) the i(y n) converge to some

as n - -, for i = l,...,q. The {.} must be the eigenvalues of A(y). But1

then A'(y) is not the transition matrix of an ergodic process, a contradiction.

Q.E.D.



Definition. Let E(y) denote the span of the eigenvectors and generalized

eiqenvectors of A(y), except for the aigenvector which corresponds to the

eigenvalue unity.

Theorem 3. Assume the situation of Theorem 1, but let A(-) be continuously

differentiable on [y,yu] (at the endpoints, take the left- or right-hand deri-

vatives, as appropriate); then so is P(-), and P (y) is the unique solution in-- y

E (y) to the equation

(4.1) P y(y) = A(y)P y(y) + A y(y)P(y).

Furthermre, the derivative P n,y(y) given by

(4.2) p (y) = A(y)P (y) + A (Y)P (y)
n+l,y n,y y nl

converges geometrically to P (y), uniformly in y f Iyt,yu] and in the initial
y

condition P0 (y), if we set P0 ,y(y) = 0.

If A(-) has continuous second derivatives on [y£,yu ], then so do P() and

P (-), and P (y) is the unique solution in E(y) to
n - yy

(4.3) P yy(y) = A(y)P yy(y) + 2A y(y)P y(y) + A yy(y)P(y).

Also, P nyy(y) converges geometrically to P (y), uniformly in y G [yy u]

and in the initial conditions, if P0 ,y(y) P0 ,yy(y) - 0.I

*
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Proof. Fix y. Since (I-A(y))V = 0 for V E X(y) implies that V = 0, in

order for (4.1) to have a unique solution in Y(y) it is necessary and suffic-

ient that A (y)P(y) 1 *(I-A'(y)), where A denotes the null space of the

matrix. _t(I-A'(y)) is the set of vectors Q such that A'(y)Q = Q. Since there

is a unique eigenvalue of value unity and since the row sums of AI(y) are all

unity, the components of Q must all have the same value. Thus, the necessary

and sufficient condition reduces to A (y)P(y) . constant vectors. For any
y

constant vector C = (c,c,...)', C'A(y) = C'. Thus, C'A y) = 0 and hence
y

A (y)DJ. constant vectors for any vector D. Consequently (4.1) has a unique
y

solution P (y) in E (y).y

Next, we show that P (y) is the desired derivative. Write (for

Y (Y£,Yu), otherwise 6 > 0 or 6 < 0, as appropriate)

A(y+6)P(y+6) - A(y)P(y) = P(y+6) - P(y).

Thus,

(4.4) !A(y+6)-A(y)] P(y+6) = (I-A(y)) [P(y+6)-P(y)]
6 6

The left-hand side of (4.4) is uniformly bounded and is in Z(y) for each 6 > 0

(since (I-A(y))V E F(y) for any V) and it converges to A y(y)P(y) as 6 -+ 0. When

considered as an operator from F(y) to E(y), [I-A(y)] has a bounded inverse.

Thus, as 6 - 0,[P(y+6)-P(y)]/6 converges to P (y), which must equal Py(y), byy

the uniqueness proved above.

We now turn to the convergence (4.2). By Theorem 1, P n(y) converges geo-

metrically to P(y), uniformly in [y,,y u and in P0 (y). Also, since we use

P (y) - 0,
0,y
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n
P n+ly = A (y)Ay (y)P(y).

But Ay (y)Pi(y) is a bounded sequence in ):(y), and as i - it converges geo-

metrically and uniformly to A (y)P(y). Also A(y) is a contraction when actingY

in E(y), uniformly in y C [yiyu ] . These facts imply the desired convergence

of P (y). The limit must be a solutioni to (4.1).
n,y

The assertions concerning P are proved in the same way and wC omit the
yy

details. Q.E.D.
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V. TIGHTNESS OF {UE , SMALL £, LARGE n1
n

By "c small" and "n large" we mean that there arc 0 0, N < ,such0 r

that the assertion holds for c < E00 n > N . The actual value of t0 will be

unimportant. Basic to the proof of weak convergence of {UL()} is the tightness

of {U , small c, large n}.
n

Theorem 4. For each small £ > 0, there is an N < such that the doubly

indexed sequence [Uc, c small, n > N I is tight, where U = (yC-y)//E.
n C n n

-2
Proof. Define V(y) = (y-y) We have

(5.1a) E EC -y E =1EIcI (y )y (1-V I{XC'I =Nl) + 8 (yn )(l-yE )(1-v2I(x f 2N2
n n+l n E n n 1 n 1 C n n 2 n 2

£. £:E2 2 2£ C 82(yn (lYn(l ciX,2.2)

(5b Ey -y )2 = e 2 pa 2(y ,)yF(1-v I{X- 1=N } + a8 (YE )(l-y E)(1-v lItXE ON M).(5.1b) En(Yn+l n c ( n  n 1 n } n n 2 n 2

For small c,

E C(y -y)(ci (y) )J +0 (y C)J k < E C(Y F -y) [a(y C)jC +6(yC) 1

n n C n ln c n 2 ,n nnn1 n n2n

since 0 < a (y) < a (y) and a (y) t4 a(y) only if yn-y >_ 0 (for small C), and con-
C n

versely for the 6 term. Using the above inequality, (5.1a) and lyn+ 1-ynI - O(),

r£

C C C _ C C l
(5.2) Vy+)-V(yn) < 2Ijc~y -Y, Ir(y )y (1-V I{xn -N1

L i2 2
+4. (YE )(1l)(1V Ix W -ON n+ O(k. )

n n 2 n 2
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1

Define VC (n) by

C 1
(5.3) VI (n) 21,c(y (X (y V in

L 2 2

j-n
+ ,1c~ i,,Ni } v [P( (tj-,

Note that P (XE,O,N.Iy) I{X"I-N.1 By Theorem 2, the sums converge absolutely
n 1 n n

(the suminands go to zero at a geometric rate) uniformly in n, y' X Thus

IV'(')I = 0(E), uniformly in all the variables.

Next, evaluate

C 1 E~
EnVl (n+l)-V( (n) =-2vc(yn-£y)a(yn )y V [P (N 'l ) -I{X'=N}

nl n nn n n n .

-21jc(y Cy)8( y C )v2 [P 
2 (N lye) - I("N

(5.4) + I 2virv1 {E C(YC -y)cx(y E)y E PI(N 1lye+1 P C j-n-1,N lye
jnl I n n+l n+l n+l 1nl n+l 1 n+li j=n+l

- (y -Y)a(YE)y [Pl (Nl l y n ) - Pl(Xn ,j-n,Nl l y
1 )]}

n n n 1nnn

+ a similar sum for route 2.

We next show that the sums in (5.4) = O( 2) uniformly in all the variables

C o
n, yn, X For simplicity we work only with the first sum (route 1). By

lye -ynl = 0(c), the smoothness of a(-) and 8(.) and Theorem 2, the sum changes2- (n

by O( 2 ) if (y n-y)Q(y n )yn is replaced by (yC-y)m(yC)yE. Upon making the
n+1 n+1 n+l n n n

substitution and using the Markov property of {X.(y), j_>n) with the value y -

Y and "initial" condition

Ln
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X (Y) = X
n n n

E P1 (XL j-n-1,N Iy') 1 X' ' j-nN tYl),
n n+l 1 111

we can rewrite the sum as

[ (1 l(N L

(5.5) 0(c) E'UP 1(N lY ) - (N lynL
n 1 n+n n

- [P (XnL ,j-n-1,N 1 Y E p (Xn+I, -1 )N 2 O

Write Syn = Yn+l-n' and use the differentiability (Theorem 3) of the Pi and

the law of the mean to write (5.5) in the form

1

O()6Y E~ f[Pl(NIcE+6cY) 1 P(X'+,-1N *1 d + O(E 2
n j= n 0y n n y n+ ln+Yn"

By Theorem 3, the sequence of absolute values of the inteqrands converqes to

zero geometrically as j -, uniformly in s, n, AyE, and XL  . This, together

I = O(E), yield that (5.5) is O(E2 )  The same result holds for the

sum in (5.4) corresponding to route 2.

Define VC (n) - V(y E)+V C(n). By (5.2) and (5.4) and the fact that the
n 1

suam in (5.4) are O(c 2),

ELvr(n+l) VE(n) < O(c 2) + 2 Yn- (y )y l(-V P (Ny))
n n n n 1 ln

Owing to the definition of a(-) and R(.) and the fact that YuE [YIFyu], then- I
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IL

bracketed term has its unique zero at yn y and it is positive (negative,

,reap.) for yn < Y Cy > Y , resp.). Thus, there is a y > 0 such that

(5.6) EEVC (n+l)-V( (n) < O( 2) - CyV(y)
n n

By jVC(n)l - O() uniformly in n, E V (nil-VC (n) < 00 2 YVLn) and hence

n

(5.7) EVC (n) < (exp - Eyn)EV (0) + O().

Again, since IV (n) l = 0), uniformly in n, (5.7) holds for V(yE ) replacing

VE (n), from which the existence of the {N } and the asserted tightness follows.C

In particular, let 0 < K0 be arbitrary and let NE be the smallest integer n

such that (exp- eny) <KO E. Q.E.D.
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VI. WEAK CONVERGENCE OF {U(C())

Definition. Recall the definition of N given at the end of the proof of

Theorem 4. For any sequence of integers n >N,, define Q . n -N . Define

AC= C and similarly define th, ":ihifted" sequeiwcs ", X tT hYn =Yn +n U1CIS n Xn adjin Te

C

(6.1) U +1 U+ /E[Oz (,,) + (YE )J~n+I n +  n n III n 2n

By Theorem 4, {U , c small) is tight. For each integer N, define UE N %c,NU n 'Y

1,E,N
J. viain

=C ,EN + N CN c, I, %cN(6.2) U+ = n + ," in + 8(y )Jn lb (Un)
n U Yn in n 2n N

where b (-) is defined above (2.1) and we set , U if I'Uo < N and equal

wher N,, a-v II , N and eqato zero oteise. Also U ( y V defines y n 3. is simply the
tzeoohrie AloUn (Yn y n in

indicator function of the set {route i is tried first and call accepted} for
th sst -C E,N "^:,N, c,N

the system {X y , where the choice probabilities { } are used to select the
n 'n n~

routes and {n is the corresponding route occupancy process. We supposen

XEN .c 'CN expectation cdiaon E,N,Nthat K0  X n Let E denote yconditional o n  and nnr n n

Since lyn  -y < rc(N+I), for small t it is irrelevant whether we use , , 8 or

a, 8 in (6.2), and we use a, a for simplicity. By Theorem 1, if we show that

(for each N) , (.) f is tight and that all weak limits satisfy (6.3) until first

escape from SN, then {ic(.)1 is tight and all weak limits satisfy (6.3).

We now define some auxiliary processes which are used in the averaging

method errnoved in the proof. Let P denote the measure defined by the stationary

,lrocpss [X (v), .'i>-'}, with corre,;-,ondina exiectation oTerator E. For each n,

it is necessary to introduce the process (Xj (y), jn), but with "initial" condition

Xn( ) n ,n (I.e., after time n, the route choice probability is y.) The opera-



tor ?IN denotes the expectation of functions of thi process (X (y), J>n) condi-
nN

tional on the "initial" condition X n(Y) = Xn Let 3 J (y) denote the indicator

function I~call arrives at j+l, is assigned to and accepted by route i), when the

route choice variable is V and the route occupancy process is (X.()}. Whether we

intend the ergodic process or the process {X (y), j>n) starting at time n with

X n = n will be made obvious by use of either E or n  Define

iSu(Y) = Wy)j (Y) + () ().S = ij 2j

Under P, the right side has zero expectation.

Theorem 5. For any sequence n> N E {U (.) is tight in D[O,-). All weakly

convergent subsequences converge to a Gauss-Markov diffusion satisfying (6.3).

If CQ * as E - =, then the limiting diffusion u(.) is stationary in that

u(O) has the stationary distribution. (In all cases u(O) is independent of B(.).)

(6.3) du 2 Gudt + odB, B(.) = standard Brownian motion,

(6.4) G F F' (y) T Y(l-y) IV2 P N Iy)-V P (N1  I .

(6.5) 0 2 0(2 (y)) 2+2 6) 0 ((Nhu n Y )

n-l

Proof. Part 1. Until Part 4, all superscripts N will be omitted. Thus

. c ~ ~ 1- _- i .} or. ,N . ,N t.,N ",N Iy ,N~i }
J we write 4n n, nn " -....) for n En X n Fyn X n N .... we

actually work with the N-truncated process in Parts I to 3.
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By (5.1),

' oC~-~ 'I % - '(6.6) En(Un-U) = vIVYtl-Ynl I x n -vb
n n+1 n n n 2 n I 1 2n

Let f(2,, = 03, tho space of bounded (x,t) functions with compact
0

support whose mixed partial derivative. up to ordor 2 in t ind 3 in x are

continuous. To apply Theorem 1 to tU (1 I, we will get an f'() of the form

f (ne) = f(%U ,ne) + f (ne) + fl (nc) + f2 (ne)
n 01 2

where the f.(ne) will be defined in the sequel. For each N, all o(-) or O(.)
1

are uniform in all variables except their argument. We have

*,C "E %CE fMU +nc+c)-f(U,nc) = E[f( n'nv)-f('U',nc)] + f (U ,nc)c + o(E),n n n n n+l n t n

[f(Un,nE)-f( ,ns)] = E f (U nn)(U -U) + -E (UI,nC) (Un-U ) + o(C)nl n+1ln n fu n nf n 2 ruu n 0 n+l- n

(6.7) r- ]i f u(,nc)Yn(1-Yn)b (Un)[V I{fX' 2 =N 2-v I{nl-N 1]
u n n n N n 2 n 2 1 n 1

f %f:~ '~' X 'L '-C^E 2
+ uu(U ,nE)En (U n+l-Un) + o(C).

2

By the differentiability result of Theorem 3, we can rewrite the term

before the o(c) as follows:*

~2 (je)f (i'C c) ' " , ",C 2N ~ [Q (yn) Jln+8(y) J2n

2% %c~ - %ec

=cbff (nn M)' E ' C 2

N u N n uu( n In+Yn 2n ''+~'J()
2

2 \,c n c (} . 1 )= b bN  (U n)f uu (U n ' , cn [a l (y) +8 (y) 2n (i)] 2 +2 ( )
2

*The terms EiJ 1 (y) and i3ic('Y,) differ only in that in the first case is1 used

an the choice variable to got the successor state to X n, and Ynis used in the

second case.
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Part 2. We will "average out" the terms in (6.7) one by one. Define

fC(ne) (analogous to the definition of V (n) in the last section)

-- hi 'C Y\ 2 , \,

(6.8) fL (n&) v i dl bN (Unn X X U,""n

'\ t It ll

N 2Iyn ) , - (11 (X j-n. ,  - ,'N 1 ( ,M

Proceeding analogously to the method of Theorem 4 for V (n), we evaluate

i Cjn, U 'C C %nLN~(writing P (XnJ-n,N.In) in the more convenient form E P (X11 1
noore n n+1 , J- , i n

in T below, for j > n; see above (5.5))3

(6.9) kcfE(nC+E)-f1 (n E ) . T + T2 
+ Tl - -f n E)=T "

l/-YnLE)b(Yn)f (Un-,ne) [( {n 2=N2-Uvl =N })
1n n N n Un 2 n 2 1 n 1

- 2( "I e)-,,~l1PIY( ))]

nc +c)b (i1 )y (1-y2 n u n+l, N n+l n+l n+1

[V (P2 +,j-n--1,N 2 yn+1 - (N Y,+))
j=n+l 2

-N+l' - n+ )- P  Yn+l 9) '

%'C C -.= -i f (Unc) y (l-y )bN (Un )]3 u n n n N n

j-n+l

-V (1, 3 -n-IN 1 "" (N Iy M
1 4-1
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Using the differentiability result of Theorem 3 and the fact that

2 1V2 P2(N21y) = vlP (N1 1y), we get that T1 equals the negative of the first term

on the right side of (6.7) plus

(6.10) ib N n(22 vP(N2)-V (NI l) Un| + o().

'Y\'C I\e, _ A , ..

In T 2, by replacing yn+l by yn and b N(U n+l)f (U ,n+i) by

bN (Un)f (U n,n) + (bN (U )f (U n,nu)) u(U n+l-U ,

we only alter the term by o(E). Let us make these replacements in T and denote
0 02 2 2

the resulting term by T2 . Now, split T2 into two parts (T 22), the first

(second, resp.) being T 2 but with bN(U nf u (U nE) ((bN (U )f (U nnE)) u (U n + l -U)
E nu

resp.) replacing bN(Un+l)fu(Un+l,nE+c). By the differentiability results of

Theorem 3 and the fact that ly n+l-y n  = 0(c) and an argument like that below

0
(5.5), it can be shown that T + T = o(E). Thus

21 3

(6.11a4 T + T3 = o(E) + (l-yn)(b (U )f (Un n))
2 3 n n N n u n' u

E n (U +l-Un [v(p2(X n+lj-n-1,n - p2 (N 21yn))

n =n+l

We now simplify (6.11a) by a series of replacements, each one altering the
term by o(c). First replace all the Yn Theorem 3 and Un+l-Un 0( O

and a differentiability argument such as used below (5.5), this only alters the
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term by o(c). Since v 2 P (N21y)-v 1 PI(N1 1y) - 0, we delete this part of the result-

ing summand. We now have

~c %E

(6.11b) T + T= O(E) + F'[b (U )f (UnEj E (U 1U q
2 (N n U nn u n+lnn j-n+l

where for j > n+l,

S[v 2 ,E ,2 1 '-V
q. [P (X ,-n-lNy)-vP (X ,j-n-l,N1 y)hIjy(l-y) = +.6u (Y).2 n+1 2 1 n+ 1l nl

Finally, by the differentiability result of Theorem 3, (6.11b) equals

(6.12) T2 + T 3  o() + Eb N(U n )[b N (Un )f (U n ,ne) u n6u (Yh6u.(Y).
j=n+l

The difference between (6.11b) and (6.12) is simply due to whether Yn or y is

C C Cused to getX andUn+1 fromXn and

Part 3. Now, we "average out" the sum in (6.12). Define f2E (nE) by

f22

E(ne) = b N(U n)[b N(U n)f u(U n jn u(y6ky-~

By the (uniform) geometric convergence result of Theorem 2, the sum converges

absolutely and jf2(nE)I O(E). By a straightforward calculation using the

stationarity of {6Un()} under P, we can show that

nf2(nC+E)-f2(ne) =- (6.12) + o(c)

^vE 'V C 6 Y)6+ ebN(Un)[bN (Un)f WU,nc)]u I'0l~''

Finally, we treat the term before the o(c) of (6.7) - in the form in

which it is written below (6.7). Define fE(n) by
0
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f 2nE E -(5~ IE f(6Uj (y) 2 E(6u (Y)).

By a procedure similar to that used for fE (n), it can readily be shown that
1

ye C E f uu (U ,ne)  2',
E nf 0(nc+c)-f 0(n) = o(E) + C 2 bN (U )E(6u0(y))

-E

f uu(U n )2 .2
u b 2n n (U )E aY(-()j (y)+B(y)J (y)]2 N n n In 2n

Summarizing the previous calculations

E nf (ne+c)-f (nc) = o(E) + Eft (U n ) + ef (U nE)GU bN (U)

C'\'e '\'(6.14) + f (U ,ne)b ,u (n)bN (U ) 6 0 %()u(Y)
f U nnNnj=l

fuu n, 2 I.C+ U 2 b N(Un) [E(6u )) + 2 u uJ-
Part 4. Conclusion. Reintroduce the superscript N. Fix N. All the

fe,N Iv N0v,
are bounded and of order O(Y'ci) and {U 0} = {U£,N(0)) is tight. Also

c.Nf£'N(ne+c)-f ,N(nc) - O(E). Thus, by [7], Theorem 2,
n

the bounded sequence {U£,N(.)} is tight in D[O,w). Let £ index a weakly con-

vergent subsequence with limit U N(.). Since A is defined to be the infinites-

imal operator of (6.3), by (6.14) and Theorem 1, we see that UN(') solves the

martingale problem corresponding to an infinitesimal operator AN whose coeffic-

ients equal those of A in SN' Thus, by Theor,, 1, {U ()} converges weakly to a

solution u(-) of (6.3). The independence of B(.) and u(O)"is a consequence of

the fact that a(-) is the unique solution to the martingale problem. The

stationarity assertion is not hard to prove, but we omit the details. Q.E.D.
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VII. ASYMPTOTIC THEORY OF AN ADAPTIVE QUANTIZER: INTRODUCTION

In recent years there has been a great deal of effort concerning the effic-

ient quantization of signals in telecommunications systems, e.g. of voice

signals in telephone transmission systems. Let z() denote the actual signal

process and A a sampling interval. In the problem of interest, the signal is

sampled at moments {nA, n=0,l,...}, then the samples {z(nA)} are quantized, and

it is only the quantized samples which are transmitted. Let 0 = 0 < &i < ... <

<  = 0, 0 = n < i ... < n where &if n i = 0, ... , L-1, are real
L-1 L 1 2 L 1'i+l'

numbers. Let the quantization function Q(-) be defined as follows: there is

a y > 0 such that for z(nA) > 0, Q(z(nA)) = yni if z(nA) l and set

Q(-z) = -Q(z). The parameter y is a scaling parameter. As the signal power

increases (decreases), y should increase (decrease) for efficient reconstruction

of the signal from the sequence of quantizations.

The problem of choosing appropriate values of y when the signal powers can

vary by an order of magnitude or more has led to the study of adaptive quan-

tizers. We give only a brief description in order to formulate the problem.

For more detail and discussion of the engineering considerations, the reader

is referred to the references [4], [5]. Let c denote a "rate of adjustment"

paramete, r the scale parameter y and let ynE denote the value of the adapted

scale I --neter at the nth sampling instant. Set 6 E (0,1] and let 0 < ME <

S < < -with ME < 1, C > 1. We study an adaptive quantizer which
M2  M 1

is a truncated form of the (typical in such an application) adaptive system

(7.1) yn (y nB where B = Mif znA) E [yn& i-ly ) "

Goodman and Gersho 141 did a thorough analysis of (7.1) for the case B

1 and {z(n)} independent and identically distributed. With B 1, the sytm

ia
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has some desirable robustness properties and this case, together with simula-

tions, is discussed by Mitra [5] and others. The last reference is concerned

more with reconstruction of the process z(.) from {Q(z(nA)) I and does not give an

asymptotic analysis.

Generally, with non-i.i.d. {z(nA)}, it is hard to get concrete information

on {yn} for large n. If the signal power varies over time or if (as is real-
n

istic for moderate values of A) {z(nA)} is not i.i.d., then techniques such

as used in [4] fail, but for small rates of adjustment (E) an asymptotic

analysis can still shed light on the process behavior. At the present time,

it seems that little more can be done for the general case. Here, we scale the

problem so that an asymptotic analysis is possible. For mathematical as well

as practical purposes, it is useful to confine y to some finite positive

interval [yR,yu]. Now, we define the truncated form of (7.1) which will be

studied. Let a > 0, 0 < ae < 1 and let {.I be real numbers such that Z <

2 < ... < tL and 91 < 0, 1L > 0. Then we use

= (yF-)l-Ca BeIyu
(7.2) Yn+l n B nyg

where denotes truncation and

BE = (l+ck.) if Iz(nA) I E [Yni-lYnCi&n 1

The asymptotic results can be used to get information on the effects of the

{1.}, A, structure of z(.) and a on the performance for small c. For notational
1

convenience below, let yt < 1 and yu > 1. Rewrite (7.2) in the form (7.3), where

1-c y[l-ec log yJ+O(2 ) and (l+£bn) B N are used, and F and b have the
n n

obvious definitions.

A
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I y

(7.3) ye Y n n(l' 1b-) -(ay l q , ) YO Y "n l - [vE(l+cbL)- o v loq C4o( )]I li,. (Ao,,n ) IU(,

Yi Y9

In [41, the process {log yn } rather than (yn1 is dealt with.

We proceed in very much the same way that we did for the automata problem.

The main difference arises from the unboundedness of {z(nA)}, under assumption

(7.6). By definition,

Lb = Z iI{lz(nA) l E [ync~ , yn )}

n i=l ni-l'n

There are continuous functions Z, (.) such that (7.4) and the properties below
1

it hold.

C Y C C - C E 2€• =y (lcB y 11- €y log Yn + O('
(74 n+l n nnn n

n C 2Yn + CFc (Yn'z(nM)) + O(c2)'

where

L

(7.5) C (y) iC (y)I{Iz(nA) E [yEi'Y
ni

Also, I i(-) can be chosen such that -t out of an 0(c) neighborhood of
1 1

y" (resp. yu) if Z. < 0 (resp. i. > 0), and 0 > RE(y) > Z. for E. < 0 and
0 < E 1 -- 1 1

0 < 9..(y) < i for 9.. > 0.

1



-28-

Some assumptions. For specificity, z(-) is assumed to be a stationary

Gaussian process with a rational spectral density. Thus there are an asymptot-

ically stable matrix M, a matrix C, a row vector D, and a process v(-) such that

(7.6) dv = Mvdt + Cdw

z = Dv, w(.) = vector-valued standard Brownian motion.

This assumption is not essential - only certain smoothness properties of

the multivariate density are used, together with the exponential rate of

decrease of the effects of the initial conditions.

2Define F (y) = EF (y,z(nA)) and F(y) = EF(y,z(nA)). Let 00 = var z(t).

We have (the subscript y denotes the derivative)

(7.7) Ri[ exp - -i-l exp - 2 /
dy y v2i i i12 l-

(774YY 2-T 0a i=l 2a 0  2a02

_ 2 L- 2 2_
2 i-£ X exp -2y /2o -/y.2 o i+ il

We can see from the terms in (7.7) that F(y)/y is the sum of two strictly convex

functions, the first being bounded and having a negative slope, and the second

going to as y - 0 and to- as y - . Thus there is a unique y E (O,w) such

that F (y) - 0. Also f(y) > 0 for 0 < y < y and F(y) < 0 for y > y and F (y)

# 0. We assume that y C (yt,yu). For small c, the assertions in the last
sentence hold with F replacing F. Define Un - (y L-Y)/VF and let E denote

Vtn n n

expectation conditioned on (v(JA),J<nI.
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VIII. TIGHTNESS OF (UC, SMALL c, LARGE n)

The proof is similar to that of Theorem 4 in Section V and we only set

it up and indicate how to deal with the fact that iz(nA) is unbounded.

Theorem 6. Under the conditions in Section VII, the conclusions of Theorem 4

hold.

Proof. Define V(y) = (y-)2 There is a y > 0 such that (y-y)F(y) < -yV(y),

all c > 0 and y E [yyu]. We have

C c 2 2 C = C, £ C 2Y'n+f-'ny = Y ) Fn+l (Ynz(nA ) )-FE (y ) +O( '

L

F(y) = y. RF(y)p{y _ - c,(y log y),
i=l

(8.1)

L
E. (y = CF (y) + C y., (yC) [P1y[.<lz(nA)<ytilv(nA-A)r
n Yn+l-Yn Ln

P(y &1 1cjz(nM)jy yum + O(2).

As done in connection with (5.2) (where a£, BC were replaced by a,$), we get an

upper bound for the second moment by replacing tijy1 ) by Ii (hence FC by fi. Thus

(8.2) E v(y C )-V(y ) < O( 2 ) + 2£(y -y)F(yc)
n n-l n --

+ 2 (y-)[su in (8.1) with e) eplaced by E
n smi 81 w i
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Next, define Vl(n) by VE(n) - Vl(n,yn) where

O LE
(8.3) V 1 (n,y) = 2c (y-Y) . L .yti[PYi 1._<z i.)I<yoilv(n..-)}

j-n i=l

- JY p y _ <lzlnA)I-yCi ]

IV Cn) l can be estimated by use of the following fact. There are K0 < and

a> 0 such that le MtI < K e-at. There is an a1 > 0 and a K < -such tha

-aT /2
T > T > 0 and on the set {v(t): Iv(t)Ie <I,

2 1

-al 1
(8.4) IP{v(t+T.)E Bi, i=1,21v(t)} - P{v(t+T.)E Bi, i=l,2}1 < K e

for all Bi, B2 ..

In order to use (8.4) (in this application we set B2 - range space of v(t)),

write the I= in (8.3) as

H
(8.5) + ,

j=n j=H+l

where H = min(m: e-(m-n)Aa/2 v(nA-A)I<l = 0(l+max(0, loglv(nA-A)I)). Then

the first sum in (8.5) is 0(lmax(0, loglv(nA-A)I)), and the second is 0(l) by

(8.4) and the summability of Iexp -aljA. Thus IVl(n)I =

o(c) [l+max(0, loglv(nA-) I) < o(c) (l+Iv(nA-A)I). From this point on, the

proof is exactly the same as that for Theorem 4. Q.E.D.

-. -~.



IX. THE LIMIT THEOREM

We continue to use the tilde % terminology of Section VI, and define 'vC yOE

,etc., as there. Also, set z(nA) - z(n A+nA) and v(nA) - v(n A+nM). The idea
n C C

now is still to prove weak converqence of U(-). We use Enfor expectation condi-

tional on (v(jA), j<n+n ). We have ((9.1b) defines y , by U c,N _ Y= NYIc
C n n

(9.1a) U + EF~ (1E) + E (F~ ('EZM)~£() + 0( 3/2)

(91) + "Eli .N + (F (",F%() (Y + 0c H

Theorem 7. Under the conditions of Section VII, the conclusions of Theorem 5

hold, but where G = F y(y) and (stationary process z(.) Used)

a= EF (y,z(O)) + 2 1 EF(y,z(MA))F(y,z(O)).
n-1

Remark. If M, C or D were time-varying, then an extension of the tech-', nique is possible, provided that the time variation per step is 0(E). The limit

diffusion yields information on the dependence of the performance on the para-

meters a~, {t.} A~ {, as well as an estimate of the asymptotic variance and

correlation function for small c.

Proof. Except for the unboundedness of the noise {z(nA)), the proof

would be essentially the same as that of Theorem 5, and only an outline will

be given.

Owig t th trncaion1U I< N+l, the F E' F Cin (9.1b) can be replaced by

F and F, respectively, without changing the values, for small E. Let us make

12,3
the replacement. Fix f(-,)E10 . Drop the 9superscript N on all variables

for notational convenience, an done in Theorem 5. Then, by a Taylor expansion,



(9.2) Enf(Un+l,n;+t')-f(U: ) =o(c)+ft(U nn)+cf (Un0Fn UnbN(Un)

+ rfu(',U ') ( nE n [F (y+ ,rcz(nA) U) ]bN(U )

-Ve 2 2 (Iv
+ -E fu(Un'ne)E [F (y+ VcU,Z(nA)) /CIE)] b (Un).

Since the second derivative of K

S(y,z(nA)) with respect to y is bounded byn

constant[l+Iv(nA-A) I], the next-to-last term of (9.2) can be written as

(9.3) U f( E,n))Cn[F(y,z(nA))-F(y)]b N(U n

u n £ n Nn

+e(Un, ne) 3y En [F(y,z(nA))-F(y)] _Un bN (U n)+O(c) [l+IV(nA-A) I]-

The last term of (9.2) can be written as (recall that F(y) = 0)

ifuu ( '\' 2 2\c
(94 f (U n)E nIF(yz(nA)) y b N(Un) + o(C).

Now, we use the method of Theorem 5 in order to averaqe out the terms of

n 3 by (to average

out the second term of (9.3))

f (n ) = nf b(U nn ))b N n n F (y, (jA))_ (y)]

By an argument similar to that used below (8.5), together with the derivative

bound stated above (9.3), it can be shown that E f3(nc+c)-f3(nc) = -(second

term of (9.3)) + o(.) 11 + I'(nA-A) 21and that lf(n-)j < o(E)[i + jv(nA-A) I].
Next, intruduce f '(nt) (tu aveiaqt, out (9.4)):



Cf2(n U)  2 2u

2 f (U nc)b (U . E F (y"z())-EF2(y,z(JA))]
) =n

Then, as for f3' we have 1fE(nE)} < O()1 + jZ'nA-A)jI. Using this, it is not

hard to show via a small amount of manipulation that

'V f I)4)-t fl)( nL)bN (U IF EF (y,z(nA))E (y z~n)
n 4 A 2 uuWOf(nf Nn n

+ o(E) 1l + {Iln' -I -).

Next, introduce f5(nE) in order to average out the first 
term of (9.3):

E~% -_ -V

f 5(nE) = vE fu(Un ,nE)b NT W n EnF(y, Z(jL&fl.
jwn

Then, again, IfE(nc) I = o(/c)(1 + jv'(M-A) 1) and we can write
(5

(9.) E n5 -f5(n) (first term of (9.3)

+ f(U n+ Nn+l- un N n n+l
n j=

J n+ 1

With a small amount of manipulation, we can show that the last term of (9.5a) equals

(95b e N(Un fu (U nn :b N( U n) Hu E F,^'J)) j''n)+(c) [l+1"(nA-A) J].

j-n+l

Fina1y, fr(n) is Introducd In ordtir to avoraqe out the sum term in (9.5b) in

the same way that f2 (ni) was used to average out (6.12) in Theorem 5. Define

... ' .. .. .- ... .. ,,,,. , .. .. , .._,,.,. _2 .:: _: .. '.,-,2
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(9.6) f6(ne) [f (U, nb (Y) I b ( )

F, Tyzz y jA F kA)) yz'( j A))

j=n k=J +1

By (8.4), f (nt-) is well defined and is O(c)[1 + Iv(nA-A) 12, as will now be
6

proved.

Define H as below (8.5) and let E jk denote the (j,k)th suimnand in (9.6)

and write the sum in (9.6) as

1 1 E E (B' c + ii.

Enjk f~

j=n k-j+l j=H+l k=j+l
n jk

By the argument connected with (8.5), the inner sum in I is bounded by

(9.7) IEnB I < E E . = 0(1 + I•(nA-A)I).
kmj+l -- k=j+l n 1 jk

Thus, by the bound on (H-n), I < O(1 + I^(nA-A) 12). To treat II, we note the

following: there is a K2 < - such that for H < < k, n Bjk I < K exp -al(j-n)A.

Also, for k > j,

i'Fy,'~kA) <K 2[ex p -al1(k-J)A+Ifl(exp -a(k-j)A)'v(JA-A) i > 11].

With a little more work, these estimates yield the existence of a K3 < - such

that 1'B-kI < (1+O( Iv(M-L)I)K3 exp -alA[(j-n)+(k-j) ]/2, from which the factJn j
that II - 0(1) and the last sentence of the previous paragraph both follow.

It is straightforward to show that
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'ht'nfL(n+) J tn) - -(sum term in (9.5))
n 60

rb N( ) [f (if ,nE)bN (jt) ] [ F(yZ(nA))F(yz(O) + o([) 2I
Nn u n Nnu 1n=l

Summarizing, with f (nt) defined by fn+ Y n w

have

(9.8) fl(n£+cf (nf-) o(t) Ll4Iv(nA-A) ) + t.ft(Un,n,-) + _f (Un,n(:I (y)Ub(U n )
n t n in y n N n

+ eb (Ui£)[f (? ,nr)b (U ) EF(y,z(nA))F(y,z(0))
N n u n N n u=l

'bE

f u lE) 22

+ EbN(ON) 2 EF2 (yz(O))+o(E) [l+1Y(nA-A) 1
2 ) .

Now, if the { ,N(.)) (returning to the use of superscriit N) were tight

for each N, then (9.8) and Theorem 1 imply that any weakly convergent sub-

N N,sequence of {U,(.} converges to a diffusion with operator A
N
, whose coeffic-

ients equal those of A in SN and, hence, that the oriqinal {u)} convergc

weakly to the solution of (6.3) with the G and a defined in Theorem 7.

But (dropping the superscript N again) 6i 3fi(nL)j = o(i) l+jV(nA-A) 2]

and IEnf (nC4C)-f£(n) I = O(E) + o() [I+IW(nA-A) 2] and for any T <
n

K > 0, the Gaussian property implies that

lir P{sup fv(ne) 2 < K) = 0.

r-O n<T/r

Thin%, tiqht ntH q ftt olrws by 'Ih*lir'm 2 of 11 1 or 171, as it did for the case of

11he'otem 1 . .E. D.

- , .
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Harold J. Kushner*

Y. Bar-Ness**

Abstract

A general method for approximating systems with wide-band inputs by diffusion

processes is discussed. The input noise itself can be processed nonlinearly by

elements of the system. One particular case is examined in detail, that of a

hard limiter just after the input. The results suggest that the limiter can

actually improve performance if the noise intensity is small. The development

illustrates how tricky, but potentially useful, nonlinearities can be handled

when the system input is wide-band noise.
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I. Introduction

Consider a (linear or nonlinear) dynamical system with a wide-band noise

input. It is often of considerable interest to approximate such systems by

diffusion models so that, e.g., Markov process techniques can be used. In [1] -

[4], [7], several powerful methods for doing thi.; have been developed.

Roughly, the input noise process is parametrized by t and as t - 0, the bandwidth

(BW) - -, while the power per unit BW converges to a constant. The limit process

is found via methods of weak convergence theory. The methods are particularly

useful when the system noise (and/or siqnal) is processed nonlinearly; i.e.,

only nonlinear functions of the noise appear in the dynamics. Th e problem is

often not what the so-called correction term might be, but what the entire

form of the limit is, and this is not usually easy. In fact, when nonlinear

functions of the noise appear, the notion of "correction term" loses much of its sense.

In this paper, the system of Figure 1 is dealt with.

E E E
= F(v ) + Dy

(i.i)
E: £ E E E: r

y = L sign u , u = s + n - G(v ), v (t) R

£

where n (' is a scalar-valued wide-band noise input process. Conditions

on F(-), n (") and G(-) will be given below. The main result is that as c - 0

(BW -), the measures of (v (.) } converge to those of v(-) where v(.) satisfies

the It8 equation

(s-G(v))2-)a 2i2/dB
(1.2) dv = F(v)dt + LD[( ('2/iT) dt + ,i7_7/ dB],

where B(') is a standard Brownian motion and L, a, a will be defined below.

Roughly, "a" is related to the correlation function of the nE (-)/(Ejn£(t)1 2 )1/2,

* and a 2 is the intensity of the spectrum of n (-) in any band [0,BW] for small r.

*



If, in the system of Fig. 1, the saturator and (lin L were rep~laced by a

qain K, then the limit would be (fol]ow,; from the method of this paper)

(1.3) dv = F(v)dt + KD[(s-G(v))dt_ + /2 db],

where for the noise modelused for (l. 1), R = o2 /a. There is no s o-called

"correction term". Owing to the form of the saturator function, the formal

technique of Stratonovich is inapplicable.

The example is offered to illustrate what can be done with one particularly

annoying but useful nonlinearity. The basic method is widely applicable. The

scheme is unrelated to statistical linearization, which in fact is not con-

cerned directly with approximating processes.

Before proceeding., compare (1.2) and (1.3) for the case when the feedback

-G(-) is supposed to be stabilizing (i.e., when the system is designed to make

the error s(t)-G(v (t)) small. In (1.2), the term in the dynamics which

involves the error is proportional to 1/0, and in (1.3), the noise term is

proportional to a. Thus for small a, we expect the limiter to enhance stability

without increasing the noise effects, an important point to note. For large o,

the limiter does not seem to be helpful. A simulation comparison of the "pre-limit"

with the limit for a somewhat different problem (a phase-locked loop with a satur-

ator) suggests that the limit (E + 0) results are often the "worst" case, in that

(for example) the limit mean square error often increased to the limit value as

-
C 0. (They also suggest that often the limit process is approached quite fast

(as measured, say, by the mean square value of the input to the limiter) as C - 0.)
I

We do not know the extent of applicability of this rule - but it seems to hold

* ( frequently. When it does hold, th, limit results can provide useful upper bounds,

and system improvements suggested by the' form of tho, limit might well be improvements
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for the *pre-limit" case also. Unfortunately, it is not usually possible to get

approximate diffusion processes where the BW is not large - so, even if it is not

large, the results for large BW might be a useful guide to the qualitative behavior.

Reference [5] contains some applications to problems in communications

theory of the same general idea. But owinq to the unbounded nature of the noise

and the form of the discontinuity and feedback, the problem here is harder

and the analytical details different.

Section II gives specific assumptions. The main background theorem and

some comments on weak convergence appear in Section III, and the convergence

C{v H()} - v(-) is proved in Section IV. A similar method would be used with

other nonlinearities.

II. Model Assumptions

1. The noise model. Let z(-) denote a stationary Gaussian process with

correlation function a2 exp -ailr, a > 0, and set nE (t) = z E(t)/, where

z C(t) = z(t/C 2). As c -* 0, the spectral density of n (-) converges to 2 2/a

on any finite interval. The scaling is a convenient and common way of getting
C

a noise process n (') whose spectrum converges (as c - 0) to that of a white

noise with a constant power/unit bandwidth. For other correlation functions

the /2 in 2 in (1.2) is replaced by something slightly different. We use

the noise form only to facilitate the evaluation of the coefficient of dB(-)

in (1.2). The Gaussian assumption simplifies the proof that certain integrals

converge - but is not essential.

2. The limiter gain L . If L r L, a number not depending on c, then

as r o 0, the "increased wi.dness" of n-(.) essentially wipes out the saturator -

- --- - .
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replacing it by an open circuit. Thus L must increase as c decreases. In£

any particular fixed practical system, one particular value of L will be used.

But as the bandwidth - -,this value of L will have to increase (see proof in

Section IV) and cL will have to converge to a non-zero number. So we use

L = L/.
C

3. Other assumptions. G(-), F(-) are continuously differentiable and

the solution to (1.2) is unique in the weak sens., s(') is right continuous

and uniformly bounded on [0,-). The method is most easy to use if the functions

are smooth. The analysis will be done with g (.) replacing g(.) = sat(-),

where the piecewise linear g (-) is defined in Fig. 2. We then get the result

{v£( - ) }  v(-) as E - 0, then a - 0.

III. Weak Convergence; A Convergence Theorem

Tightness. Let D r[0,-) denote the space of R -valued functions on [0,o)

which are right continuous and have left-hand limits. A certain topology

rcalled the Skorokhod topology ([6], section 14) is usually put on D . The

process v (-) is considered to be a random variable with values in D r[0,-) and

induces a measure P on it. {P C or {v£(.) is said to be tight iff for

each 6 > 0 there is a compact K6 C D r[O_) such that PE(K ) > 1-6, all c.

fvE (')) is said to converge weakly to a process v(') with paths in Dr[0, ) and

inducing measure P on it iff for each bounded real-valued function g(-) on

Dr [0,0)' fq(w)dP C M fqwdfci as e -* 0. Thus weak convergence is a

generalization of convergence in distribution. It is the appropriate form of

convergence for our problem. The tightness condition for {vC (.)} will hold

under our assumptions.
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Truncated processes. The actual technical proofs of tightness and weak

convergence are easier if the processes {vL(.)} are bounded. Define

(3.1) v ,N .F(v ,N)+Dye N]bN (v , N) YtN = L g (u , ),

c,N L c,N)
u s + n - G v ,

where b (v) = 1 for v E S = {v: Ivl<N}, b (v) = 0 for v S , and bN(v) N0,1l
N N - N N d bNv 01

and has third derivatives that are bounded uniformly in v and N. If we can

prove convergence for {vN(-), €-O for each N, then Theorem 1 says that we

can prove it for (1.1). Thus, the truncation is purely technical and does not

affect the result.

Definitions. Let A denote the infinitesimal operator of the diffusion (1.2).

Let t'N denote the a-algebra induced by vC'N(s) ,nE(s),s<t) and EE'N the cor-t tNt E,Ndeedo al.
responding conditional expectation. Actuallyy ,N and E depend on a also.

t t

But we usually suppress the a affix. Let S be the class of measurable (w,t)

functions such that if g(.)C W, then Elg(t+6)-g(t)I - 0 as 6 + 0 and

sup Ejg(t)l < - and g(t) depends only on {v cN(s),n (s),s<t}. We say p-lim 6-0 f =

t
iff sup ,Ean t 0 as 6 - 0. Define an operator eN and its

domain ) as follows: g E) and £N q iff g,q EX and

E Ng(t+6)-g(t)
p-lim El - q(t)l = o.

The following theorem is Theorem 1 of [21, adapted to our case. .J' denotes
e s0

the set of continuous real-valued functions on Rr x f0,m).
I



Theorem 1. Let the equation (1.2) have a unique weak-sense solution. Fix N.

For each f(-) E a dense set (sup norm) in f0' let there be a sequence

{fc,N(.)}I C satisfying the following:

(3.2) p-lim If,'N(t)-f(vNt,t) + 0W I

(3.3) fc,N(.) E O-(A,'N),I

(3.4) p-lim IADNfE'N(t)-(A +t)f(vN(t),t)I = 0,

a-0

where AN is the infinitesimal operator of some diffusion process and the coeffic-
ients of AN and A are equal for ve SN . Then if {v IN( . ) } is tight for each N,

{vE()} 4 v(.) weakly.

Comment. Tightness is not hard to prove here. See comments at the end

of the proof of Theorem 2, which applies Theorem 1 to our case (1.1). Given

f(-,-), the main problem is to find the fEN(.) and to verify (3.2) - (3.4)

(and ultimately to prove tightness). The method used here and in [l, [2] is

similar to the averaging method used in [3]. We choose the form f WN(t)

N ,N N E,N
f(vC' (t),t) + f1  (t) + f2  (t), where f1  t) is chosen so as to "average out"

certain noise-dependent terms in A ENf(vEIN(t),t), and f2'N(t) is chosen to
2

"average out" certain noise-dependent terms which result from applying c,N

to f WN(t). In the proof lim means lim C 0 limra .

a-*01J4

ci4



IV. The Convergence Theorem

Theorem 2. Under the assumptions in Section II, vL (')} converges weakly to

v(-) as E - 0 and then a - 0.

2,3Proof. Let P = 50 , the subspace of ''0 of functions whose mixed partial

derivatives up to order 2 in t and 3 in x are continuous. By Theorem 1, for

each N and f(-,.)E Q-, we only need to find {fLN(.)1 satisfying (3.2) - (3.4).

E:,
For notational convenience write v 'N(-) as vL(-) in this proof, but we are alwaXs

working with the truncated process v'(-.

Part 1. Fix f(',') C . Then

(4.1) Ai'Nf(v,(t),t) = f (vC (t),t) +
t

+ b (v£ (t ) ) fl (v£(t) ' t) - [F(vE(t)) + L- g (s(t)+n ( t ) - G (v C (t ) ) ) ] .

N v C

Note that for u in any bounded set

(4.2) -Eg (u+nc(t)) - (u)/ -- [P{z(0)>-Eu+cs}-P{z(O)<-Eu-Ca)+O(C )/E]

2-l,, u+ 0(a) + 0(c),

which iustifies the L = L/E scaling. We will get f C,N in the form

fc'N(t) - f(v (t),t) + CI Nt) + fN (t),

ww d
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The following estimate will be used.

(4.3) On the set {iz(t)I<l} or even on {Iz(t) I ea,/ 2 ,
-a1lt

IP{z(t+T)C BIz(t)} - P{z(t+T)( B)I < Ce for some constants C and

a > 0, uniformly in B. Similarly, on the same z(t) set and for

T2 > T1 > 0,
-f1

IP{z(t+ti)E Bi. i-1,21z(t)} - P{z(t i+t): Bit i-1,21I < Ce for some

a1 > 0 and C < - and all B1 , B2 .

In the sequel the values of a and C may change from usage to usage.

Define g (un t)) = g (u+n (t)) - Eg (u+nc(t)) and define

e, LF e,N- £
flCN~t = E b~ v C t)) f'(v (t) 't+t)DEt g(s(t+t)-G(v (t)),n (t+T))dT

S t=-bo(s(tv(-Gv (tv/)d
N fv D t ai

0 C

By (4.3), fE'Nt) = 0(e) uniformly in , c, on the set {Iz(t/e2 )I<1}.

Define w = min(T: e aT/2 1z(t/E2 )1<1}. Write fl (.) as

f1'N(t) -E c '} dT + 1 E -) d .

ef EtN~ d f EtN.)d

0 w1

The first term is bounded in absolute value by cCw and the integrand of the

second by C exp -a1T. Thus

(4.4) IfN( t ) ] < Cc(I+w )< Ce[l + max(O,loglzE(t)).

I.



Part 2. It can be verified that feN)~ (eN and that

(4.5) 1~~~~N~ M ~~ (C() f'(vt (t) ,t) Dg, (s(t) -G(vc(t)), n W)

+ L E [bW (t))f'(v Ct) t+i)LD,(s~t+fl-G(v' (t)) n Ct+T)H vI (t),
£ jt N v
0

where the subscript*v denotes the gradient of the bracketed expression with

respect to v C t). At this point, let us simplify the notation by dropping the

e ,N E
b (v) terms. All of the f. will be proportional to either b (v Wt) or
N 1 N

b 2(v Ct)). Changing variables i/C 2~ _, and splitting the integral in (4.5)
N

into two parts and using b bN (v ) Is-G(v£ )+Dg ICL/] (but dropping the b N v)

yields

(4.6) LJ2EC, D'f (v~)tc2 Dg CS(t+E 2T)-Gv ((t)),zC-+r)/C)
(f (te v 'a 2+

g (s(t)-G(v£Ct))+z~t/C )/e)dT + 0(L.)

+ L2JE ND'fv(v£ Ct) ,t4.e2T))' (S~t+C T)-G(v~ (t),z( ~- -T)/iE)D

g CL s~t)-G(v E (t))+Z~t/E )/c)dTr + 0Cc).

The terms in (4.6) exist by the same arguments which led to (4.4). we

next show that the second integral of (4.6) is negligible as c -+ 0, a -) 0 and

get an estimate which is useful for the tightness argument. The facts that

s(t) and v Ct) are boundod (recall that we are using the truncated process

(3.1)) and that the u;upxort of q a, (u)ji*i -~s n ht1 (~ C/o

Iq C-) is the derivative of g(,(-) with respect to its argument. 7he subscript v

denotes the derivative with respect to the explicit arumn v: replace v (tV.1take

the derivative with respect to v, then set v - v~ ECt).



will be used frequently and perhaps without specific mention. Let I(A) denote

the indicator function of the set A.

By (4.3) it can be verified that

(4.7) Y = E" N 9 scv,z( t [+)/( )I < Iexp -aT + Ii lz(t/CJ>a'1JC/L.

We need a bound on Y which goes to zero as E -~0. First we get such a bound

when Iz(t/c 2)1 > ? 1. Note that

(4.8) P{IS-G(v)+z( t 2T)/CI <~ alz(t/E2)=z0 ) = ((%L)

uniformly for Iz01 > 1 and T > 0 (recall that s, v are in a bounded set-

for each N). Now, (4.8) and the facts cited above (4.7) imply that Y is bounded

by 0(E), uniformly in Iz(t/Fc2 )1 > 1, T > 0. Thus on lz(t/c 2)1 > 1

< [ep2~ I{ztc)~at/2  1/2 1/2
(4.9) Y }]ep- r+ IztC)~ C (C/ct)

(use lxI < a, lxI < b -* lxI < ,4T). Thus, on integrating the bound when

2
Iz(t/C)I > 1, we see that the second term of (4.6) is bounded above by

2 1/2C11 + MaxCO, logIZ(t/E )1)] (t:/c)

Now, we look for a bound when lz(t/C 2)1 < 1. Split the second integral in

(4.6) into the two parts f + f. The first part is 0(E/cg). Note that the

Jdensity of Z( 2+T), T > E, conditioned on any value of Izt/C )I in [0,I), is

bounded above Cby O(l/F0i. So (4.8) then holds with 0(ci) replaced by 0(c 1/ ).
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Coubining this estimate with (4.7) yields that Y is bounded above by (4.9) when

Iz(t/A2)1 < 1, but with the change that (E/)I/2 is replaced bX (E 1/4/ / ) in

(4.9). Thus, on integrating the bound, we get that the second term of (4.6) in

bounded above by

(4.10) Ctl + max(O, loglz(t/t2 ) I)ILl/%I /2 -

Part 3. We turn our attention to the first term of (4.6) and show that,

by an "averaging", it can effectively be replaced by its expectation. To facil-

itate the development, we define the following terms.

h (v,t,T,p) - L2D'f vv(v,t+T+p)D- a (s(t+T+P)-G(v)+n (t+T+P))

g g(s(t+p)-G(v)+n C(t+p)),

2 2 2 2 2 t
H (v,t,r,p) S L D'f (v,t+k T+c (p)D'g a(s+(t+

2c +c p )-G (V )+ z (
t

T+ p )/C)

C

.g (s(t+C p,)-G(v)+z(-2-p)/F-),
a

C

(4.11) A ~E,Nf(v,t) E-EH (v,t,T,O)dT = V f tTO)d .(.1 A0  f E(t,0l.

0 0

(4.12) f CN(t) 1 f dTE,N (vc(t),t,T,p) - Eh (v,t,r,p)
2 2 d t h £ v C(t)

0 0

=t 2 d( dT(E£INH (vC(t),t,T,p) - EH (v,t,T,p) 1
f f t C C I (t)

0 0
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where C implies that v is replaced by v (t) after takinq the expectation.
vv (t)

We must show that fLN () is well defined. First note that the inner integral
2

of f°N (with p = 0 and a chanqe of variable!;) is just the first term of

(4.6) centered about its expectation. The form of f ,N(_) is chosen to allow

us to average out thc first t.rm ot (4.6) and to elfvctively ridacc it by its

average value At Nf(v (t),t).

By the method used to bound If1  (t) I, we c-n (et that the innur integral
of f2 (t) exists for each p. Recall the definiltion w - mln{w: c ' ' Iz(t/f2 )1<1

21

and write (4.12) as

j dp di E" NB+E dp di E"'NB I + I.t t "

w 0 0 0

First we show that II is well defined. By (4.3) and the definition of w1 , the

absolute value of the integrand in II is bounded above oy C exp -alP, > 0.

Also IEH (v,t,1,p)l < C exp -al1r for some a1 > 0. By (4.3) and on the set

{P>wl}, and for C, a1 (whos, values kiairt my chdonqt from usage to usage)

1 E:'NH (,t,I,p) < L L H (v,ti,r,) It t+L P

< C E*Ne~t-l + I-a/21 zt (p , I

exp -a 1 1 + CP1 z(-.t p) >ew

C exp -a 1  2 p>w ;z(t/C 2I exp -a T + Ce -ai/ 2EI(.+)i 2

<.C exp -a 1.



Chabychev's inequality is used to get the next-to-last inequality. Combining

the above estimates yields that the int,,qrand in II is bounded by (for some a1 > 0,
2

) C oX ip -a I(T+p). Ience TI O( ).

The term I is also O(t 2) but not uniformly in z(t/t). Bound the inner

integral of I by

I dT E F-N BI I E"'~ f dr IELFN2 BI III.
o t t+ P0 0 t+p

By the arguments used to get the bound on If1 ,N(t)t, we get1

III< Cc2 E Nl + max(O, logiz(t -+P) I)]
t2

< Ce2 E t N [1 + log(dz(t--p) I + 1)].

t

By Jensen's inequality and the concavity of loq(-),

III < CE 2 [1 + loq(lz(tj)j + C)].

Since w < C max(O, loglz(t/c 2) j),

(4.13) If,'N(t), < c 2(I + log(Iz( _j + C)12

Henceforth, we will give only an outline of the details, which can all

be filled in via the estimates and techniques developed above. It can be shown

that f(.) 'A(NN) and that



-14-

i4f4_ Nc,N.t Nf( t)t
(4.14 () negative of first term of (4.6) + A0 f(v'(t)t)

2 0

+ (termsi who.;e l-llm equal zc:-o)
L O)

The term whose p-lir = 0 is just (fH N (t)) '(t), where f2,N is the gradient
2,v 2:v

of the expression for f2e'N with respect to the arquzment v (t). The components
2

of i c,Nf ,N which involve f are bounded by O(E). Loosely speaking, the
2 vv

remaining component is of the form

(4.15) o(C) + C fE vgX + Et  f gag, v  E f vvg , A

- E fvv gga,v ]dTdp ga'

where we omit the function arguments. By a method similar to that used to get

2
(4.13), we get the bound (4.13) on (4.15) but with (c/a) replacing F

Part 4. The estimates obtained in Parts 1 - 3 imply that

p-lir jfC(t)-f(vc(t),t)I = 0,

C-0

p-lim IA 'Nf (t)-f (vE(t) t) -L2--rr (s(t)-G(v D'f (v (t),t)

ac*O

- A O N f(v (t),t) I = 0.
0

A proof very similar to that in (5], Section 6, part 2) yields that AEN f(v,t)
0

D'f (v,t)D(ln 2)/a uniformly in v for each t. In calculating the limit, the
i i'

*one of the reasons for the choice cov[z(o),z(t)1 - a exp -aT is to allow us to save

work by using this result. The choice allowed an explicit evaluation of the diffusion

te=. With other choices the diffusion coefficient would be left in an "integral" form.



G('), s() play no role and the limit (E ; 0, a 0) is the same as for the

case (ck = 0, e 0). If the bN (v) terms were retained, the result would be the

same, except that either bN or b2 would multiply the f , f or f . By whatsae ecp ta ite N ob N  v'vv vvv

has just been said

(4.16) p-lim IA'Nf Nt) - (- + A)f(v (t),t)I = 0,

E-*O at
OL0

where A is the infinitesimal operator of v(-) in (1.2). If bN were retained,

the A in (4.16) would be replaced by some A
N which would equal A where b ( 1,

i.e. in SN* Thus, by Theorem 1, if {v"'N (")} were tight, then the proof would

be completed.

Tightness. Use ([2], Theorem 2).The conditions of Theorem 2 (2] hold if (4.17)

holds for each N and T <

(4.17) lim lim P{supIAe'fE'N~t) I > I= 0,
K-~ c-O t<T

OL0

lim P(sup If ,N(t)+fCWN(t) > 61 0, each 6 > 0.

e--0 t<T

But (4.17) follows from (4.10), (4.13) (and a similar estimate for (4.15), and

the fact that the Gaussianness and stationarity imply that . I '

lim sup CYIz(t/ 2)I 0 w.p. 1. Q.E.D.

C00 t<T

j
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